如果 a/b=c/d (a>b, c>d),那么 (a+b)/(a-b)=(c+d)/(c-d)。我们把这个结论称为合分比定理。也就是说,一个比例里,第一个前后项之和与它们的差的比,等于第二个比的前后项的和与它们的差的比。这叫做比例中的合分比定理。证明:(a+b)/(a-b)上下同除以b,则将a/b用c/d替换 b/b用d/d替换,上下约分即可得(a+b)/(a-b)=(c+d)/(c-d)。

如果 a/b=c/d (a>b, c>d),那么 (a+b)/(a-b)=(c+d)/(c-d)。我们把这个结论称为合分比定理。也就是说,一个比例里,第一个前后项之和与它们的差的比,等于第二个比的前后项的和与它们的差的比。这叫做比例中的合分比定理。证明:(a+b)/(a-b)上下同除以b,则将a/b用c/d替换 b/b用d/d替换,上下约分即可得(a+b)/(a-b)=(c+d)/(c-d)。
免责声明:本站所有文章和图片均来自用户分享和网络收集,文章和图片版权归原作者及原出处所有,仅供学习与参考,请勿用于商业用途,如果损害了您的权利,请联系网站客服处理。
Copyright © 转乾企业管理-查查知识网 版权所有 | 黔ICP备2023009682号